Fiscal Unit/Academic Org
Administering College/Academic Group
Co-adminstering College/Academic Group
Semester Conversion Designation

Current Program/Plan Name
Proposed Program/Plan Name
Program/Plan Code Abbreviation
Current Degree Title

Chemistry - D0628
Arts And Sciences

Converted with minimal changes to program goals and/or curricular requirements (e.g., sub-
plan/specialization name changes, changes in electives and/or prerequisites, minimal changes in overall structure of program, minimal or no changes in program goals or content)
Chemistry
Chemistry Bachelor of Science major
CHEM-BS
Bachelor of Science

Credit Hour Explanation

Program credit hour requirements		A) Number of credit hours in current program (Quarter credit hours)	B) Calculated result for 2/3rds of current (Semester credit hours)	C) Number of credit hours required for proposed program (Semester credit hours)	D) Change in credit hours
Total minimum credit hours required for completion of program	58	38.7	42	3.3	
Required credit hours offered by the unit	Minimum	53	35.3	39	3.7
	Maximum	58	38.7	42	3.3
Required credit hours offered outside of the unit	Minimum	0	0.0	0	0.0
	Maximum	5	3.3	3	0.3
Required prerequisite credit hours not included above	Minimum	55	36.7	37	0.3
	Maximum	55	36.7	37	0.3

Program Learning Goals

Note: these are required for all undergraduate degree programs and majors now, and will be required for all graduate and professional degree programs in 2012. Nonetheless, all programs are encouraged to complete these now.

Program Learning Goals

- Students will develop critical skills in problem solving and demonstrate effective oral and written communication of scientific knowledge, while planning experimental procedures, completing chemical procedures, and using scientific equipment

Assessment

Assessment plan includes student learning goals, how those goals are evaluated, and how the information collected is used to improve student learning. An assessment plan is required for undergraduate majors and degrees. Graduate and professional degree programs are encouraged to complete this now, but will not be required to do so until 2012.

Is this a degree program (undergraduate, graduate, or professional) or major proposal? Yes
Does the degree program or major have an assessment plan on file with the university Office of Academic Affairs? Yes
Summarize how the program's current quarter-based assessment practices will be modified, if necessary, to fit the semester calendar.
No modifications are planned or required to fit the semester calendar.

Program Specializations/Sub-Plans

If you do not specify a program specialization/sub-plan it will be assumed you are submitting this program for all program specializations/sub-plans.

Pre-Major

Does this Program have a Pre-Major? No

Attachments •Chemistry_BS_v2.pdf: Chemistry BS proposal

(Program Proposal. Owner: Hadad,Christopher Martin)

Comments

Workflow Information

Status	User(s)	Date/Time	Step
Submitted	Hadad,Christopher Martin	$03 / 31 / 201111: 26$ PM	Submitted for Approval
Approved	Hadad,Christopher Martin	$03 / 31 / 201111: 27$ PM	Unit Approval
Pending Approval	Andereck,Claude David	$03 / 31 / 201111: 27$ PM	College Approval

Chemistry Major Program Goals and Objectives

Students will develop the required skills of the chemical discipline.

1. Students will learn to solve chemistry problems, working both individually and in groups.
2. Students will develop effective skills in oral and written communication of scientific knowledge.
3. Students will learn to plan experimental procedures, carry out basic chemical procedures, use laboratory equipment, analyze data and prepare laboratory reports.
4. Students will learn to follow safe practices in the lab.
5. Students will learn how to retrieve information from the chemical literature, and become proficient in online database searching.
6. Students will learn how to use modern computer software for graphing, manipulation of symbolic mathematical expressions, and quantum chemical calculations.

Courses should cover the essential content of modern chemistry.

7. Organic, analytical, physical and inorganic course sequences will be up-to-date with current principles and pedagogical practice.
8. Lab courses in the above areas will serve to reinforce the principles.
9. All courses will emphasize scientifically ethical practices.
10. A full course in biochemistry will be highly recommended and normally taken by both B.A. and B.S. majors.
11. Courses in the major program will deal with chemical applications in other disciplines such as biology, physics and engineering.
12. Courses in the major program will demonstrate connections of the subject to frontier areas that are research active.
13. Elective courses will be offered in interdisciplinary areas that currently show high potential for rapid development such as nanoscience and environmental science.

Students should be prepared to undertake a broad range of activities that utilize their training in chemistry.

14. A large fraction of students will engage in research with faculty members, either by taking research courses or by being employed as laboratory assistants.
15. Honors chemistry students will normally write undergraduate theses based on their research with faculty members.
16. Students will be successful in gaining admission to prestigious graduate or professional programs.
17. Graduates will embark on successful chemistry-related careers.

Department of Chemistry

Newman and Wolfrom Laboratory
100 West $18^{\text {th }}$ Avenue
Columbus, OH 43210-1185
www.chemistry.ohio-state.edu

March 31, 2011

To: University Semester Conversion Committees
Re: Conversion of Undergraduate Major (B.A. and B.S.) and Minor Programs in Chemistry

The Department of Chemistry currently offers a Bachelor of Arts (BA) and a Bachelor of Science (BS) degree as part of our majors program, along with a minor in Chemistry. Our currently offered majors programs prepare students for a variety of careers, with the BA degree being less intensive in required chemistry courses, thereby offering opportunities for undergraduate students to expand their schedules with interdisciplinary courses. Historically, our BA degree has been the most popular with students who are intending to pursue preprofessional programs (pre-medicine, pre-dental, pre-veterinary, pre-pharmacy, pre-optometry, pre-law, etc) or for chemistry-related employment, including sales and marketing. The BS degree requires more chemistry and mathematics courses and is better preparation for a student going off to graduate school in a chemically related discipline (chemistry, biochemistry, pharmacy, etc) or for employment in chemistry (pharmaceutical or materials chemistry).

The American Chemical Society (ACS: www.acs.org) provides guidelines for the educational preparation for BS degrees in Chemistry, and the department is currently certified to comply with those guidelines. The ACS only provides guidelines for BS Chemistry degrees. For some institutions, there are significant guidelines as to contact hours by instructors and so on; however, for a large university like Ohio State, the most important aspects of the guidelines are a minimum amount of hours (400) in the chemistry laboratory across the entire BS degree (but excluding first-year general chemistry), a minimum exposure to laboratory experience in 4 of the 5 major areas of chemistry (analytical, biological, inorganic, organic and physical) as well as lecture instruction in all 5 areas.

On a yearly basis, the department provides an update report to the ACS as to our current program and its requirements, and on a 5-year schedule, we re-apply for re-certification of our major programs. Thus, upon graduation, our BS majors can receive a certified ACS degree if they comply with the ACS requirements. Between $25-50 \%$ of our BS majors per year receive ACS certified degrees.

Our program continues to grow, with approximately 200% more chemistry majors as new first quarter freshmen (NFQFs) in autumn 2010 as compared to a typical number of 35-40 incoming students in the 1990s.

The process for the conversion of our undergraduate major programs began in summer 2010 with many discussions with our faculty and teaching staff. The courses were discussed at numerous meetings of the faculty at large as well as the Undergraduate Curriculum Committee, chaired by the Vice Chair for Undergraduate Studies (Christopher Hadad). On December 10, 2010, the Undergraduate Curriculum Committee unanimously voted to adopt the envisioned programs presented here for the revised undergraduate programs under semesters. Then, the faculty voted on the same programs at a January 19, 2011 faculty meeting and voted 25 in favor, 0 against and 0 abstain to adopt these revisions to our programs.

The details of these revised programs are provided in the accompanying documentation.
If you have any questions, please contact Christopher Hadad at (614) 292-1204 or hadad.1@osu.edu.

Sincerely,

Malcolm H. Chisholm
Chair and Distinguished University Professor
Department of Chemistry

Christopher M. Hadad Vice Chair for Undergraduate Studies Department of Chemistry

Program Rationale Statement (Bachelor of Science degree in Chemistry)

The revised program for the Bachelor of Science (BS) degree in Chemistry is a relatively straightforward conversion of our existing BS degree under quarters. We maintain core experiences in general, analytical, organic, inorganic and physical chemistry. Exposure to biochemistry is strongly encouraged and would fulfill an advanced science elective (shown as a course in the third year). Advanced science electives can be fulfilled by pre-professional students who require a specific course in biochemistry. Relative to our BS degree under quarters, we continue to require similar content in mathematics (through differential equations, Math 2255) and a year of physics (1250-1251).

The most significant changes to our program relate to our laboratory courses. Many of our laboratory courses (for example, analytical, inorganic and physical chemistry courses) were onequarter offerings, and these quarter offerings are now expanded to one-semester courses (analytical: 2210; physical: 4410; inorganic: 4550). Our organic laboratory courses were twoquarter sequences (254-255), but previously required a pre-requisite one-quarter lecture course (251). With semesters, we cannot require this pre-requisite lecture course, and our semester organic lab offerings (2540-2550) must be offered concurrent with lecture (2510-2520 or 2610 2620 or $2910 \mathrm{H}-2920 \mathrm{H})$. Thus, these lab offerings had to be adjusted in terms of our current two 3-hour (or 4-hour) lab meetings per week to be only one 3-hour (or 4-hour) lab meeting per week. Overall, our new semester plan is commensurate with semester offerings by peer institutions.

The American Chemical Society provides guidelines for an ACS certified BS degree. Specifically, to be certified, the student should have a minimum amount of hours in laboratory courses (beyond general chemistry) and be exposed to all areas of chemistry (analytical, biological, inorganic, organic and physical) in a lecture format and also have a laboratory experience in at least 4 of the 5 areas. Thus, if a BS chemistry major follows our suggested course sequences, they will have the correct breadth of lecture (5) and laboratory (4) experiences as well as the minimum laboratory hours (400) to obtain a BS degree certified by the ACS. Moreover, a chemistry research experience (4998/4999 as well as the honors variants) can complement the course-based laboratory hours for ACS certification.

Research remains a highly recommended and encouraged science elective.
Another change is an extension of our current effort to have a majors-only version of our highenrollment courses. Until only recently, our Chemistry majors have been able to take our Honors sequence $(201 \mathrm{H}-202 \mathrm{H}-203 \mathrm{H})$ or the regular sequence (121-122-123) of general chemistry. In 2009, we created a new general chemistry sequence for chemistry (and biochemistry) majors: 161-162-163. These options have been maintained for general chemistry under semesters (honors, majors-only, and regular sequences). Organic chemistry has been a similar challenge with our $100+$ chemistry majors immersed in a sea of $1500+$ (predominantly pre-professional) students. While Honors organic chemistry was an option, there was no majors-only version of organic chemistry. For semesters, we have created a 2610-2620 organic sequence for chemistry (and biochemistry) majors, along with retention of our honors ($2910 \mathrm{H}-2920 \mathrm{H}$) and regular (2510-2520) sequences. We anticipate that content of pertinent relevance to chemistry (and
biochemistry) majors will be provided in the majors-only sequence (for example, state-of-the-art methodologies in carbon-carbon bond-forming reactions as well as asymmetric and catalytic processes).

We do not have specializations or subprograms for our BS degree; instead, from one-on-one discussions between the undergraduate student and our chemistry advisors, we create the ideal program of courses that will cater to the specific interests of the student. For example, a chemistry major who plans to go to graduate school in organic chemistry would be advised to take some additional courses above 5000 level in organic chemistry prior to graduation. Those 5000 -level courses would count as advanced science electives in the senior year.

In terms of science electives, there will be many advanced chemistry courses (5000 level and above) from which students may select. Potential courses (5000 level and above) from departments outside of chemistry will be evaluated by our advising staff on a case-by-case basis.

While we show a typical sequence of courses, we will offer many of these course offerings in both the autumn and spring quarters so that students can adjust their schedules for their particular needs. We anticipate that an undergraduate student who starts with general chemistry in their first year will have little difficulty in graduating in 4 years under semesters.

Bachelor of Science Degree in Chemistry - Typical Plan for Students with 4 Years on Semesters

Freshman Year (Semesters)				Total
Autumn		Spring		
General Chemistry 1 (1910H, 1610, 1210)	5	General Chemistry 2 (1920H, 1620, 1220)	5	
Calculus 1 (Math 1151)	5	Calculus 2 (Math 1152)	5	
GE Elective (e.g. biological science)	4	GE Elective	3	
GE Elective	3	GE Elective	3	
Survey	1			
	18		16	34
Sophomore Year (Semesters)				
Autumn		Spring		
Organic Chemistry 1 (2910H, 2610, 2510)	4	Organic Chemistry 2 (2920H, 2620, 2520)	4	
Organic Chemistry Laboratory 1 (2940H, 2540)	2	Organic Chemistry Laboratory 2 (2950H, 2550)	2	
Introductory Physics (calculus-based) I (1250)	5	Introductory Physics (calculus-based) II (1251)	5	
Calculus 3 (Math 2153)	4	Differential Equations (Math 2255)	3	
		Analytical Chemistry 1 (2210H, 2210)	5	
	15		19	34
Junior Year (Semesters)				
Autumn		Spring		
Physical Chemistry 1 (4300)	3	Physical Chemistry 2 (4310)	3	
Inorganic Chemistry (3510)	3	Physical Chemistry Laboratory (4410)	3	
Advanced Science Elective (e.g. Biochem 4511 ${ }^{\text {a }}$)	3	Analytical Chemistry 2: Instrumental Analysis (4870)	3	
GE Elective	3	Advanced Lab (Inorg Lab 4550/Biochem 5621 ${ }^{\text {b }}$)	2	
GE Elective	3	GE Elective	3	
	15		14	29
Senior Year (Semesters)				
Autumn		Spring		
Advanced Chemistry Elective	3	Elective	3	
Laboratory Practice in Instrumental Analysis (4880)	2	GE Elective	3	
GE Elective	3	GE Elective	3	
GE Elective	3	GE Elective	3	
GE Elective	3			
	14		12	26
${ }^{\text {a }}$ Biochemistry $4511=4$ credit hours		${ }^{\mathrm{b}}$ Biochemistry $5621=4$ credit hours		123

Bachelor of Science Degree in Chemistry - Plan for Students with 1 Year on Quarters \& 3 Years on Semesters

Bachelor of Science Degree in Chemistry - Plan for Students with 2 Years on Quarters \& 2 Years on Semesters

Freshman Year (Quarters)
 Autumn

Winter
Spring
Chemistry 201H, 161, or $121 \quad 5 \quad$ Chemistry 202H, 162, or 122
Math 1515
GEC 5
Survey

Math 152
5
5
$\begin{array}{llll}\text { GEC } & 5 & \text { GEC } & 5\end{array}$
Chemistry 203H, 163, or 123
5

15
Sophomore Year (Quarters)
Autumn

Chemistry 251 H or 251
$4 \quad$ Chemistry 252 H or 252
4

Spring
Chemistry 221H or 221
5 Chemistry 254H or 254
3 Chemistry 255 H or 255
4
Physics 131
Physics 132
5 Physics 133 3

GEC
Math 254
Math 2555
5 Math 254

Junior Year (Semesters)

Autumn

Physical Chemistry 1 (4300)
Inorganic Chemistry (3510)
Advanced Science Elective (e.g. Biochem 4511a)
GE Elective
GE Elective

Spring

Physical Chemistry 2 (4310) 3
Physical Chemistry Laboratory (4410) 3
Analytical Chemistry 2: Instrumental Analysis (4870) 3
Advanced Lab (Inorg Lab 4550/Biochem 5621 ${ }^{\text {b }}$) 2
GE Elective
3
14

Senior Year (Semesters)

Autumn

Advanced Chemistry Elective
Laboratory Practice in Instrumental Analysis (4880)
Elective
2 GE Elective

Spring

GE Elective
3 GE Elective
3 GE Elective
$14 \quad \begin{aligned} & 12 \\ & 26\end{aligned}$
${ }^{\text {a }}$ Biochemistry $4511=4$ credit hours
${ }^{\mathrm{b}}$ Biochemistry $5621=4$ credit hours

Bachelor of Science Degree in Chemistry - Plan for Students with 3 Years on Quarters \& 1 Year on Semesters

Chemistry Courses for Semesters

Title	Quarter Course Number	Quarter Credits	Semester Course Number	Semester Credits	$\begin{gathered} \text { Course Information } \\ (L=\text { lecture, } \\ R=\text { recitation, } B=l a b) \\ \hline \end{gathered}$	Comments
Chemistry and Society	100	5	1100	5	$3 \mathrm{hr} \mathrm{L}$,	extension of content (GEC)
Elementary Chemistry 1	101	5	1110	5	$3 \mathrm{hr} \mathrm{L} ,1 \mathrm{hr} \mathrm{R} ,1 \times 3 \mathrm{hr} \mathrm{B}$	selected content from 101-
Elementary Chemistry 2	102	5				102 qtr courses (GEC-lab)
General Chemistry 1	121	5	$\begin{aligned} & 1210 \\ & 1220 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 3 \mathrm{hrL}, 1 \mathrm{hr} \mathrm{R}, 1 \times 3 \mathrm{hr} \mathrm{~B} \\ & 3 \mathrm{hrL}, 1 \mathrm{hr} \text { R, } 1 \times 3 \mathrm{hr} \mathrm{~B} \end{aligned}$	simple conversion (GEC-lab)
General Chemistry 2	122	5				
General Chemistry 3	123	5				
General Chemistry for Engineers	125	4	1250	4	$3 \mathrm{hr} \mathrm{L} ,1 \times 3 \mathrm{hr} \mathrm{B}$	selected content from 121125 qtr courses
General Chemistry for Majors 1	161	5	$\begin{aligned} & 1610 \\ & 1620 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$3 \mathrm{hrL}, 1 \mathrm{hr}$ R, $1 \times 3 \mathrm{hr}$ B $3 \mathrm{hrL}, 1 \mathrm{hr}$ R, $1 \times 3 \mathrm{hr} \mathrm{B}$	simple conversion (GEC-lab)
General Chemistry for Majors 2	162	5				
General Chemistry for Majors 3	163	5				
Honors General Chemistry 1	201H	5	$\begin{aligned} & 1910 \mathrm{H} \\ & 1920 \mathrm{H} \end{aligned}$		$3 \mathrm{hrL}, 1 \mathrm{hr} \mathrm{R}, 1 \times 3 \mathrm{hr} \mathrm{B}$ $3 \mathrm{hrL}, 1 \mathrm{hr}$ R, $1 \times 3 \mathrm{hr} \mathrm{B}$	simple conversion (GEC-lab)
Honors General Chemistry 2	202H	5				
Honors General Chemistry 3	203H	5				
Analytical Chemistry 1: Quantitative Analysis	221	5	2210	5	$3 \mathrm{hr} \mathrm{L} 1 \mathrm{hr} \mathrm{R},, 1 \mathrm{x} 4 \mathrm{hr} \mathrm{B}$	simple conversion ($2 \times 4 \mathrm{hr}$ B, qtr to $1 \times 4 \mathrm{hr}$ B, sem)
Honors Analytical Chemistry 1: Quantitative Analysis	221H	5	2210H	5	$3 \mathrm{hr} \mathrm{L} 1 \mathrm{hr} \mathrm{R},, 1 \mathrm{x} 4 \mathrm{hr} \mathrm{B}$	simple conversion ($2 \times 4 \mathrm{hr}$ B, qtr to $1 \times 4 \mathrm{hr}$ B, sem)
Introductory Organic Chemistry	231	3	2310	4	$3 \mathrm{hrL}, 1 \mathrm{hr} \mathrm{R}$	extension of content (will cover all functional groups)
Organic Chemistry Laboratory 1	245	z	-			to be deleted
Organic Chemistry Laboratory 2	246	z	-			to be deleted
Organic Chemistry 1	251	4	$\begin{aligned} & 2510 \\ & 2520 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 3 \mathrm{hrL}, 1 \mathrm{hr} \mathrm{R} \\ & 3 \mathrm{hrL}, 1 \mathrm{hr} \mathrm{R} \end{aligned}$	simple conversion
Organic Chemistry 2	252	4				
Organic Chemistry 3	253	4				
Organic Chemistry Laboratory 1	254	3	2540	2	$1.5 \mathrm{hr} \mathrm{L}$,	simple conversion
Organic Chemistry Laboratory 2	255	3	2550	2	$1.5 \mathrm{hr} \mathrm{L} ,1 \times 4 \mathrm{hr} \mathrm{B}$	simple conversion
Organic Chemistry for Majors 1	---	---	2610	4	$3 \mathrm{hr} \mathrm{L}$,	NEW course sequence for
Organic Chemistry for Majors 2	---	---	2620	4	3 hrL , 1 hr R	majors
Honors Organic Chemistry 1	251H	4	2910H	4	$3 \mathrm{hr} \mathrm{L}$,	simple conversion

Honors Organic Chemistry 1	251H	4	2920H	4	$3 \mathrm{hr} \mathrm{L}$,	simple conversion
Honors Organic Chemistry 2	252H	4				
Honors Organic Chemistry 3	253H	4				
Honors Organic Chemistry Laboratory 1	254H	3	2940H	2	$1.5 \mathrm{hr} \mathrm{L} ,1 \times 4 \mathrm{hr} \mathrm{B}$	simple conversion
Honors Organic Chemistry Laboratory 2	255H	3	2950H	2	$1.5 \mathrm{hr} \mathrm{L} ,1 \times 4 \mathrm{hr} \mathrm{B}$	simple conversion
Fundamentals of Physical Chemistry 1	520	3	4200	3	$3 \mathrm{hr} \mathrm{L}$,1 hr R	cross-listed with Biochemistry 5721; expanded content (BA)
Fundamentals of Physical Chemistry 2	521	3	4210	3	$3 \mathrm{hr} \mathrm{L}$,	cross-listed with Biochemistry 5722; expanded content (BA)
Physical Chemistry 1	530	3	$\begin{aligned} & 4300 \\ & 4310 \end{aligned}$	3	$\begin{aligned} & 3 \mathrm{hrL}, 1 \mathrm{hr} \mathrm{R} \\ & 3 \mathrm{hrL}, 1 \mathrm{hr} \mathrm{R} \end{aligned}$	simple conversion (BS)
Physical Chemistry 2	531	3				
Physical Chemistry 3	532	3				
Physical Chemistry Laboratory 1	541	3	4410	3	$1 \mathrm{hr} \mathrm{L} ,2 \times 3 \mathrm{hr} \mathrm{B}$	simple conversion
Physical Chemistry Laboratory 2	542	3				
Analytical Chemistry 2: Instrumental Analysis	587	3	4870	3	3 hr L	simple conversion
Laboratory Practice in Instrumental Analysis	588	3	4880	2	$2 \times 3 \mathrm{hr} \mathrm{B}$	simple conversion
Nanochemistry	611	3	5520	3	3 hr L	simple conversion
Spectroscopic Methods in Organic Chemistry	632	3	5420	3	3 hr L	simple conversion
Carbohydrate Chemistry	635	3	5430	3	3 hr L	simple conversion
Atmospheric Chemistry	641	3	6550	1.5	3 hr L	simple conversion
Introduction to Computational Chemistry	644	3	5440	3	3 hr L	simple conversion
Inorganic Chemistry 1	651	3	3510	3	$3 \mathrm{hrL}, 1 \mathrm{hr} \mathrm{R}$	selected content
Inorganic Chemistry 2	652	3				
Inorganic Chemistry Laboratory	755	3	4550	2	$2 \times 3 \mathrm{hr} \mathrm{B}$	simple conversion (undergraduate only)
Introduction to Quantum Chemistry and Spectroscopy	673	3	5730	3	3 hr L	simple conversion

Individual Studies	693	0-15	5193	0-15	arranged	simple conversion
Undergraduate Research	699	1-10	4998	1-10	arranged	undergraduate research (letter grade)
Undergraduate Research (thesis)	699	1-10	4999	1-10	arranged	undergraduate thesis (letter grade)
Honors Research	783H	3-10	4998H	1-10	arranged	honors undergraduate research (letter grade)
Honors Research (thesis)	783H	3-10	4999H	1-10	arranged	honors undergraduate thesis (letter grade)
Survey of Instrumental Methods			6110	1.5	3 hr L	re-envisioned course
Analytical Data Treatment: Statistical and Numerical Analysis			6120	1.5	3 hr L	re-envisioned course
Chemistry at the Interface of Biology			6210	1.5	3 hr L	re-envisioned course
Fundamentals of Coordination Chemistry			6310	1.5	3 hr L	re-envisioned course
Synthetic Principles in Inorganic Chemistry			6320	1.5	3 hr L	re-envisioned course
Group Theory and Bonding			6330	1.5	3 hr L	re-envisioned course
Physical Methods in Inorganic Chemistry			6340	1.5	3 hr L	re-envisioned course
Basic Organic Reaction Mechanisms			6410	1.5	3 hr L	re-envisioned course
Stereochemistry and Conformational Analysis			6420	1.5	3 hr L	re-envisioned course
Introduction to Organic Synthesis			6430	1.5	3 hr L	re-envisioned course
Introduction to Physical Organic Chemistry			6440	1.5	3 hr L	re-envisioned course
Quantum Mechanics and Spectroscopy			6510	1.5	3 hr L	re-envisioned course
Thermodynamics			6520	1.5	3 hr L	re-envisioned course
Kinetics			6530	1.5	3 hr L	re-envisioned course
Introduction to Electronic Structure			6540	1.5	3 hr L	re-envisioned course
Faculty Research Presentations			6780	1	arranged	re-envisioned course
Laboratory Safety	685		6781	1	2 hr L	re-envisioned course
Ethics in Scientific Research			6782	1	3 hr L	re-envisioned course

Electrochemistry	821	7120	3	3 hr L	re-envisioned course
Fundamentals and Techniques of Separation Science	822	7130	3	3 hr L	re-envisioned course
Analytical Spectroscopy	823	7140	3	3 hr L	re-envisioned course
Mass Spectrometry	825	7150	3	3 hr L	re-envisioned course
Nuclear Magnetic Resonance	824	7160	3	3 hr L	re-envisioned course
Analytical Surface Science		7170	1.5	3 hr L	re-envisioned course
Organometallic Chemistry		7320	1.5	3 hr L	re-envisioned course
Solid State Chemistry		7330	1.5	3 hr L	re-envisioned course
Diffraction Methods		7340	1.5	3 hr L	re-envisioned course
Inorganic Photochemistry		7350	1.5	3 hr L	re-envisioned course
Bioinorganic Chemistry		7360	1.5	3 hr L	re-envisioned course
Advanced Nanochemistry		7370	1.5	3 hr L	re-envisioned course
Inorganic Materials		7380	1.5	3 hrL	re-envisioned course
Advanced Inorganic Laboratory	755	7390	1.5	arranged	re-envisioned course
Advanced Organic Synthesis		7430	1.5	3 hr L	re-envisioned course
Kinetics, Catalysis and Transition State Theory		7440	1.5	3 hr L	re-envisioned course
Metals in Organic Synthesis		7450	1.5	3 hr L	re-envisioned course
Advanced Organic Reaction Mechanisms		7460	1.5	3 hr L	re-envisioned course
Computational Chemistry	944	7470	1.5	3 hr L	re-envisioned course
Advanced Organic Synthesis Laboratory	835,836	7480	3	arranged	re-envisioned course
Advanced Molecular Quantum Mechanics and Spectra		7520	3	3 hr L	re-envisioned course
Spectra and Structure of Molecules	866	7530	3	3 hr L	re-envisioned course
Chemical Dynamics	876	7540	3	3 hr L	re-envisioned course
Statistical Thermodynamics	880	7550	3	3 hrL	re-envisioned course
Introduction to Astrochemistry		7560	1.5	3 hr L	re-envisioned course
Aerosol Science		7570	1.5	3 hr L	re-envisioned course
Lasers, Optics and Optical Instrumentation		7580	1.5	3 hr L	re-envisioned course
Molecular Simulations of Materials		7590	3	3 hr L	re-envisioned course

Student:		Major:	Chemistry - B.S.
Last	First		
Student No.:		Adviso	
Columbus Address:			
Telephone No.:		d Sem.	of Graduation:

Courses
Chem 2210 or 2210 H 5

Total Hours:

1. You must earn at least a C - in a course in order for it to be listed on your major. However, you must achieve a 2.00 cumulative pointhour ratio for all major course work. If you earn a $\mathrm{D}+\mathrm{D}$, or an E in a course on your major program, the course cannot be counted toward the major. Your faculty adviser will decide whether you should repeat the course, delete the course from your major, or substitute another course. Courses taken on a pass/non-pass basis may not be used on the major.
2. All courses comprising your major must be approved in writing by your faculty adviser on a form sent to the office of the College of the Arts and Sciences. Changes in your major program may be made only with the written approval of your faculty adviser. They must be filed in the Arts and Sciences office at the time approval is given.

Courses required to support the major:

MAJOR PROGRAM FORM

Colleges of the Arts and Sciences, The Ohio State University

Telephone No.: \qquad Name .n: \qquad Expected Qtr. and Yr. of Graduation: \qquad

Courses Hours Quarter Taken

1. You must'earn at least a C-in a course in order for it to be listed on your major. However, you must achieve a 2.00 cumulative point-hour ratio for all major course work. If you earn a $D+, D$, or an E in a course on your major program, the course cannot be counted toward the major. Your faculty adviser will decide whether you should repeat the course, delete the course from your major, or substitute another course. Courses taken on a pass/non-pass basis may not be used on the major.
2. All courses comprising your major must be approved in writing by your faculty adviser on a form sent to the office of the Colleges of the Arts and Sciences. Changes in your major program may be made only with the written approval of your faculty adviser. They must be filed in the Arts and Sciences office at the time approval is given.

Courses required to support the major:

Math	$151 _152$	153	$254 _$
Physics	$131 _$	132	

The Bachelor of Science Degree in Chemistry (B.S.)

The Bachelor of Science curriculum is designed for students seeking to become professional chemists. Chemistry 161, 162 , and 163 is the recommended general chemistry sequence for chemistry majors who present high school chemistry for entrance, although qualified students are strongly urged to take the honors general chemistry sequence, Chemistry $201 \mathrm{H}, 202 \mathrm{H}$ and 203 H , instead. (Chemistry 121, 121, and 123 are acceptable, but not the preferred sequence for chemistry majors.) Chemistry 163 or 203H is followed by Quantitative Analysis 221 (or 221H) and Organic Chemistry 251 through 255 (or $251 \mathrm{H}-255 \mathrm{H}$) in the second year. Physical Chemistry 530 through 532; Physical Chemistry Laboratory 541; Instrumental Analysis 587 and 588; and Inorganic Chemistry 651 and 652 are taken in the third year. An advanced lab, Undergraduate Research Chem 699, Honors Research Chem 783H, or Biochem 521 is taken in the fourth year or earlier. The major is completed with $\mathbf{8}$ hours of advanced science electives, which must include at least three hours of chemistry courses. Advanced science electives must be approved by the undergraduate chemistry advisor. Examples of some approved science electives include: Chemistry 699 and any unrequired graded 600 or 700 level courses in Chemistry; any 500 or 600 level course in Physics; Biochemistry 511 ; most 400 or 500 level courses in Mathematics; Chemical Engineering 520, 521, and 610. Not more than nine hours of Chemistry 699 may be used to fulfill requirements of the major. Students who wish to receive a degree certified by The American Chemical Society should include Biochemistry 511 and an advanced lab experience in Inorganic or Biochemistry in their course choices for the major. A sample curriculum based on the quarter system is given below. The curriculum will change when Ohio State changes to semesters in Summer 2012, although the overall curriculum content will be very similar. Your advisers will work with you to design a curriculum transition plan. You may take your GEC courses in a much different order than is shown here. Check with your chemistry advisor to design a schedule for your chemistry, math, physics, and other science courses.

Autumn First Year

Chem $201 \mathrm{H}, 161$, or 121	5
Math 151	5
GEC-social science	$\underline{5}$

Autumn Second Year	
Chem 221H or 221 (quant)	5
Chem 251 H or 251 (org. lec)	4
Physics 131	5
GEC-2nd writing course	$\underline{5}$
	19

Autumn Third Year

Chem 530 (p. chem lec)	3
Chem 651 (adv. inorg lec)	3
GEC-foreign language	5
Biol. 113 GEC-nat. sci	$\underline{5}$

Autumn Fourth Year

Advanced chemistry elective 3
GEC-foreign language 5
GEC-arts \& hum (Lit)

Winter First Year

Chem 202H, 162, or 122
Math 152
GEC-arts \& hum (VPA)

Winter Second Year

 Chem 252H or 252 (org. lec) Chem 254H or 254 (org. lab) 3Physics 132
Math 254

Winter Third Year

Chem 531 (p. chem lec)	3	Chem 532 (p. chem lec)	3
Chem $541($ p. chem lab)	3	Chem 587 (instrum. lec)	3
Chem $652($ adv. inorg lec)	3	Chem 588 (instrum. lab)	3
GEC-foreign language	$\underline{5}$	GEC-foreign language	$\underline{5}$
	14		14

Winter Fourth Year
Chem 699 or 783H or Biochem 521 3-5 Advanced science elective GEC-history Elective

Spring First Year

Chem 203H, 163, or 123	5
Math 153	5
GEC-English 110	$\underline{5}$
	15

Spring Second Year

Chem 253 H or 253 (org. lec) 4 Chem 255 H or 255 (org. lab) 3
Physics 1335
Math $255 \underline{5}$
17 17

Spring Third Year

Spring Fourth Year

Advanced science elective 3
GEC-history 5
GEC-social science $\underline{5}$ 13

16-18
The GEC Social Diversity and International Issues requirements should be fulfilled by selecting courses that overlap with another GEC category, such as the Second Writing Course, Social Sciences, Arts and Humanities, and/or Historical Study. Otherwise additional credit hours may be added to the minimum required for the degree.

Curriculum map for the B.A. and B.S. degrees in Chemistry

Program outcomes ($B=$ beginning, $I=$ intermediate, $A=$ advanced)

	Chemistry Program Goals																
Course	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Chemistry 1210	B	B	B	B	B	B	B	B	B		B	B					
Chemistry 1220	B	B	B	B	B	B	B	B	B		B	B					
Chemistry 1610	I	I	I	B	I	I	I	B	B		B	B					
Chemistry 1620	I	I	I	B	I	I	I	B	B		B	B					
Chemistry 1910H	I	I	I	B	I	I	I	B	B		B	B					
Chemistry 1920H	I	I	I	B	I	I	I	B	B		B	B					
Chemistry 2210	I	I	I	I	I	I	I	I	I		I	I					
Chemistry 2210H	I	I	I	I	I	I	I	I	I		I	I					
Chemistry 2510	I	I	I		I	I	I		I		I	I					
Chemistry 2520	I	I	I		I	I	I		I		I	I					
Chemistry 2540	I	I	I	I	I	I	I	I	I		I	I					
Chemistry 2540H	A	A	A	A	A	A	A	A	A		A	A					
Chemistry 2550	I	I	I	I	I	I	I	I	I		I	I					
Chemistry 2550H	A	A	A	A	A	A	A	A	A		A	A					
Chemistry 2610	I	I	I		I	I	I		I		I	I					
Chemistry 2620	I	I	I		I	I	I		I		I	I					
Chemistry 2910H	A	A	A		A	A	A		A		A	A					
Chemistry 2920H	A	A	A		A	A	A		A		A	A					
Chemistry 3510	A	A	A		A	A	A		A		A	A					
Chemistry 4200	A	A	A		A	A	A		A		A	A					
Chemistry 4210	A	A	A		A	A	A		A		A	A					
Chemistry 4300	A	A	A		A	A	A		A		A	A					
Chemistry 4310	A	A	A		A	A	A		A		A	A					
Chemistry 4410	A	A	A	A	A	A	A	A	A		A	A					
Chemistry 4550	A	A	A	A	A	A	A	A	A		A	A					
Chemistry 4870	A	A	A		A	A	A		A		A	A					
Chemistry 4880	A	A	A	A	A	A	A	A	A		A	A					
Biochemistry 4511										A							
Chemistry 5000 and above	A	A	A	A	A	A	A	A	A	A	A	A	A				

Transition Policy for the Department of Chemistry

Students who begin their degree training under quarters should not be penalized as we transition to semesters. Our two chemistry advisors are available to help design the ideal program for each student in order to facilitate an optimum transition.

In general, our current quarter courses are typically either a one-quarter class or a three-quarter sequence across an entire academic year. These courses will be converted to one-semester or two-semester courses, respectively. The few two-quarter course sequences have been converted to one-semester courses.

Also, our chemistry majors are typically successful in completing an entire sequence of either general or organic chemistry in the autumn-winter-spring academic year. As was evident with the various quarter and semester plans provided with this package, most sequences would normally end in the spring term of any academic year.

In general and organic chemistry, we will continue our current practice of offering multiple courses in the summer term - for example, general chemistry (121-122-123) courses are offered in each of the four quarters. We anticipate continuing these trends for general chemistry and also continuing to offer some organic chemistry in the summer session. Moreover, in the normal academic year, we will offer general and organic chemistry courses in both semesters.

While we have created majors-only versions of general and organic chemistry, chemistry majors are eligible to take the Honors or the regular sequences instead of the majors-only version. Students who are off-sequence for whatever reason are not penalized in any way.

If space is available and enrollment demand is sufficiently evident, we plan on offering multiple sections of high enrollment courses in both semesters.

For advanced science electives, there will be multiple 5000 -level and above courses for students to select. As our graduate program is sizeable, we will continue to offer graduate-level courses for our upper-level undergraduate students to select as electives.

We are also currently considering bridge or transition courses for general chemistry and organic chemistry for a short period of time, and these may be offered in alternate formats, including 7week half-semesters. These choices will depend heavily on laboratory utilization as anticipated enrollment increases for the onset of semesters will require some assessment of priorities.

